2 research outputs found

    Policy gradient learning methods for stochastic control with exit time and applications to share repurchase pricing

    Full text link
    We develop policy gradients methods for stochastic control with exit time in a model-free setting. We propose two types of algorithms for learning either directly the optimal policy or by learning alternately the value function (critic) and the optimal control (actor). The use of randomized policies is crucial for overcoming notably the issue related to the exit time in the gradient computation. We demonstrate the effectiveness of our approach by implementing our numerical schemes in the application to the problem of share repurchase pricing. Our results show that the proposed policy gradient methods outperform PDE or other neural networks techniques in a model-based setting. Furthermore, our algorithms are flexible enough to incorporate realistic market conditions like e.g. price impact or transaction costs.Comment: 19 pages, 6 figure

    Generative modeling for time series via Schr{\"o}dinger bridge

    Full text link
    We propose a novel generative model for time series based on Schr{\"o}dinger bridge (SB) approach. This consists in the entropic interpolation via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series. The solution is characterized by a stochastic differential equation on finite horizon with a path-dependent drift function, hence respecting the temporal dynamics of the time series distribution. We can estimate the drift function from data samples either by kernel regression methods or with LSTM neural networks, and the simulation of the SB diffusion yields new synthetic data samples of the time series. The performance of our generative model is evaluated through a series of numerical experiments. First, we test with a toy autoregressive model, a GARCH Model, and the example of fractional Brownian motion, and measure the accuracy of our algorithm with marginal and temporal dependencies metrics. Next, we use our SB generated synthetic samples for the application to deep hedging on real-data sets. Finally, we illustrate the SB approach for generating sequence of images
    corecore